

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - **7**

Question Paper Code : UM9267

KEY

1	2	3	4	5	6	7	8	9	10
С	А	D	С	С	В	С	В	С	С
11	12	13	14	15	16	17	18	19	20
C	D	А	В	С	В	А	D	С	D
21	22	23	24	25	26	27	28	29	30
В	А	А	В	С	С	В	В	А	D
31	32	33	34	35	36	37	38	39	40
A,B,C	B,C,D	B,D	B,C	A,B	В	С	D	А	А
41	42	43	44	45	46	47	48	49	50
С	А	B,D	D	С	А	В	D	С	D

EXPLANATIONS

MATHEMATICS - 1

- 01. (C) Given $x^2 = (0.2)^2$
 - ∴ *x* = 0.2
 - cubing on both sides
 - $x^3 = (0.2)^3 = 0.2 \times 0.2 \times 0.2 = 0.008$

02. (A)
$$s(s - c) + (s - a)(s - b)$$

= $s^2 - sc + s^2 - sb - sa + ab$
= $2s^2 - s(a + b + c) + ab$
= $2s^2 - s(2s) + ab$
= $2s^2 - 2s^2 + ab$

03. (D) Let the first odd number be 'x'

Given

x + x + 2 + x + 4 + x + 6 + x + 8 + x + 10 + x + 12 + x + 14 + x + 16 + x + 18 = 1000

 $\therefore 10x + 90 = 1000$

10x = 1000 - 90 = 910

$$x = \frac{910}{10} = 91$$

∴ Greatest number

04. (c)
$$\frac{8^{10} + 4^{10}}{64^4 + 4^{11}} = \frac{(2^1)^{10} + (2^1)^{10}}{(2^2)^4 + (2^2)^{11}}$$

 $= \frac{2^{10} + 2^{20}}{2^{12} + 2^{22}}$
 $= \frac{2^{12} (2^{10} + 1)}{2^{12} + 1^{2}} = 256$
05. (c) Let the least angle be x^*
The greatest angle $= x^* + 60^*$
Third angle $= \frac{x + x + 60^*}{2}$
 $= x + 30^*$
We have,
 $x + x + 30^* + x + 60^* = 180^*$
 $\Rightarrow 3x + 90^* = 180^* \Rightarrow x = 30^*$
 \therefore The angles $x = 30^*$, $(1 - 1)^{12} + 32^{12}$
 $= \frac{(2^k)^{\frac{2}{3}}}{2^2} \times \frac{1}{2}$
 $= \frac{(2^k)^{\frac{2}{3}}}{(2^1)^{\frac{2}{3}}} \times \frac{1}{2}$
 $= \frac{(2^k)^{\frac{2}{3}}}{(2^1)^{\frac{2}{3}}} \times \frac{1}{2}$
 $= \frac{2^{2^k} 2^2 x}{2^2}$
 $= \frac{1}{2^2} \frac{5}{3} \frac{8}{8} = \frac{16}{24}$
 $5 : 8 - \frac{5}{8} = \frac{5}{8} \cdot \frac{3}{8} = \frac{15}{24}$
 $5 : 12 = \frac{5}{12} = \frac{5}{12} \times \frac{2}{2} = \frac{10}{24}$
 $= \frac{10}{2}$
 $= \frac{10}{2}$

11. (C)
$$S = \begin{bmatrix} B \\ 150m \\ A \\ W \end{bmatrix}$$

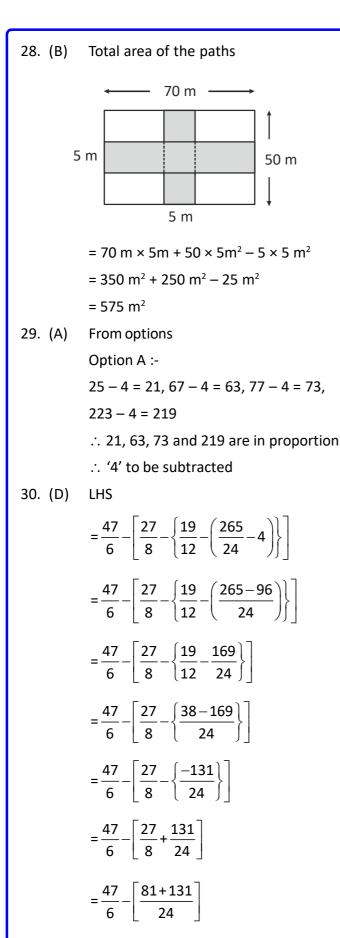
Given AB = 150 m, BC = 200 m &
 $\angle ABC = 90^{\circ}$
 $\therefore AC^{2} = AB^{2} + BC^{2} = (150)^{2} + (200)^{2}$
 $= 22500 + 40000 = 62500 = (250 m)^{2}$
 $AC = 250 metres$
He is 250 metres away from the starting
12. (D) LHS
 $= [-101 \times 13 - 101 \times 14 - 101 \times 15 - 101 \times 16 - 101 \times 17 - 101 \times 18 - 101 \times 19 - 101 \times 20 - 101 \times 21 - 101 \times 22 - 101 \times 23]$
 $= 101[-13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23]$
 $= 101 \times -198 = -19998$
13. (A) 124 × 4 - 3 + 118 ÷ 2
 $= 496 - 3 + \frac{118}{2}$
 $= 552$
14. (B) The fraction that represents the figure is
 $\frac{6}{6}$. It is an improper fraction
15. (C) Mean = $\frac{\text{sum of the observations}}{\text{number of observation}}$
 $= \frac{(2 + 40) + (4 + 38) + (6 + 36) + \dots + (20 + 22)}{20}$
 $= \frac{42 \times 10}{20}$
 $= 21$
(OR)

Mean of the first 'n' even natural numbers

$$= (n + 1)$$

$$= 20 + 1 = 21$$
16. (B) Let $\left(\frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)$ be 'a' then
LHS $= (1+a)\left(a + \frac{1}{9}\right) - \left(1 + a + \frac{1}{9}\right)a$

$$= a + \frac{1}{9} + a^{2} + \frac{a}{9} - a - a^{2} - \frac{a}{9}$$


$$= \frac{1}{9}$$
17. (A) $\angle RPB = 180^{\circ} - (60^{\circ} + 50^{\circ})$

$$= 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$\therefore \angle PRQ = x = \angle RPB = 70^{\circ}$$
[\therefore Alternative angles]
18. (D) In $\triangle PQS$, $\angle PSQ = 90^{\circ} \& \angle P = 34^{\circ}$
 $\therefore 34^{\circ} + 90^{\circ} + \angle PQS = 180^{\circ}$
 $\angle PQS = 180^{\circ} - 124^{\circ} = 56^{\circ}$
In $\triangle SQR$, $SQ = QR \Rightarrow \angle R = \angle QSR = x$
But $\angle R + \angle QSR = \angle SQP$
[\therefore Exterior angle is equal to sum of the interior opposite angles]
 $\therefore x + x = 56^{\circ}$
 $2x = 56^{\circ}$
 $x = \frac{56^{\circ}}{2} = 28^{\circ}$
19. (C) Let the number of notes of each denomination be 'x'
Given
 $\boxed{10x + \boxed{7}20x + \boxed{7}50x + \boxed{7}200x = \boxed{7}6440}$
 $\boxed{7}280x = \boxed{7}6440}$
 $x = \frac{\boxed{7}6440}{280} = 23$
 \therefore Number of notes of each denomination = $x = 23$
 \therefore Total notes = $23 \times 4 = 92$

20. (D) 24. (B) Given loss = SP of 6 apples $6a^{2}b=(2)\times 3\times (a)\times a\times (b)$ $10a^{2}b = (2) \times 5 \times (a) \times a \times (b)$ $8abc = (2) \times 2 \times 2 \times (a) \times (b) \times c$ The common in all the three terms are $2 \times a \times b$ ∴ HCF = 2ab 21. (B) $(11 \text{ cm})^2 + (60 \text{ cm})^2 = 121 \text{ cm}^2 + 3600 \text{ cm}^2$ 25. (C) $= 3721 \text{ cm}^2$ Α 61 cm 60 cm В C 11 cm \therefore (11 cm)² + (60 cm)² = (61 cm)² : Given triangle is a right angled triangle ... Area of the triangle $=\frac{1}{2}\times60$ cm \times 11 cm = 330 cm² 22. (A) $5.43 \times 5.43 - 3.45 \times 3.45$ 8.88 = 29.4849-11.9025 26. (C) $=\frac{17.5824}{8.88}$ Given = 1.9823. (A) $(x^{-1} + y^{-1})(x + y)^{-1} = \left(\frac{1}{x} + \frac{1}{y}\right)\left(\frac{1}{x + y}\right)$ $=\frac{(x+y)}{xy} \times \frac{1}{(x+y)}$ $=\frac{1}{xy}$ 27. (B) one line symmetry $= x^{-1}y^{-1}$

SP = SP of 24 apples \therefore CP = SP + Loss = SP of (6 + 24) apples = SP of 30 apples $Loss\% = \frac{Loss}{CP} \times 100$ $=\frac{\text{SP of 6 apples}}{\text{Sp of 30 apples}} \times 100 = 20\%$ In $\triangle ABC$, $\angle A + 76^{\circ} + 50^{\circ} = 180^{\circ}$ ∠A = 180° - 126° = 54° In $\triangle ADE$, $\angle A = 54^{\circ} \& AD = AE$ $\Rightarrow \angle ADE = \angle AED = a$ ∴ a + a + 54° = 180° 2a = 180° - 54° = 126° $a = \frac{126^{\circ}}{2} = 63^{\circ}$ In $\triangle CEF$, $\angle C = 50^{\circ} \& \angle E = \angle F$ $\Rightarrow \angle EFC = \angle ECF = b$ ∴ b + b + 50° = 180° $2b = 180^{\circ} - 50^{\circ} = 130^{\circ}$ $b = \frac{130^{\circ}}{2} = 65^{\circ}$ But $a + x + b = 180^{\circ}$ [:: straight angle] $\therefore 63^{\circ} + x + 65^{\circ} = 180^{\circ}$ $x = 180^{\circ} - 128^{\circ} = 52^{\circ}$ Let the present age of elder be 'x' years \therefore Present age of younger = (x - 10) years x - 15 = 2(x - 10 - 15)x - 15 = 2(x - 25)x - 15 = 2x - 50 \therefore 50 - 15 = 2x - x = x = 35 $\therefore x - 10 = 35 - 10 = 25$: Sum of their present ages = 35 + 25 = 60years An isosceles right angled triangle has only

 $=\frac{47}{6}-\frac{53}{6}$

 $=\frac{-6}{6}=-1$

MATHEMATICS - 2

31. (A, B, C)

This four triangles are isosceles right angled triangles

32. (B, C, D) B, C, D are correct options.

Given $64^{\circ} = \frac{1}{256^{\circ}}$ $\Rightarrow 2^{6a} = \frac{1}{2^{8b}}$ $2^{6a} = 2^{-8b}$ 6a = -8b $2 \times 3a = -4 \times 2b$ 3a + 4b = 0Given $64^{a} = 2 \times 2^{\frac{1}{2}}$ $(2^6)^a = 2^{1+\frac{1}{2}}$ $2^{6a} = 2^{\frac{3}{2}}$ $\therefore 6a = \frac{3}{2}$ $a = \frac{3}{2} \times \frac{1}{6} = 2^{-2}$ $\frac{1}{256^{b}} = 2^{\frac{3}{2}}$ $\frac{1}{(2^8)^b} = 2^{\frac{3}{2}}$ $2^{-8b} = 2^{\frac{3}{2}}$ $-8b = \frac{3}{2}$ $b = \frac{3}{2} \times \frac{-1}{8} = \frac{-3}{16}$ 33. (B, D) Options (B) & (D) are correct

34. (B, C)	<u>REASONING</u>					
Required number						
= LCM of (2, 3, 4, 5 & 6) – 1	36. (B)					
= 60 - 1 = 59	37. (C)	Except home, all others are human settlements. So, home does not belong				
(or) It can be 120 – 1 = 119						
(or) It can be 180 – 1 = 179		to the group. Hence option (C) is correct.				
(or) It can be 240 – 1 = 239	38. (D)	4 3				
35. (A, B)		Gray colour numbers $4 - 1 = 3$ placed in white square				
$\frac{1}{2}$ and $\frac{5}{6}$ are rational numbers		white square White colour numbers $5 - 3 = 3$ placed in				
1 5 3-5 -2 -1		White colour numbers 5 – 3 = 2 placed in gray square				
then $\frac{1}{2} - \frac{5}{6} = \frac{3-5}{6} = \frac{-2}{6} = \frac{-1}{3}$ is also a	39. (A)	Similarly $5 - 1 = 4, 6 - 3 = 3$				
rational number		$23 \xrightarrow[-4]{} 19 \xrightarrow[-2]{} 17 \xrightarrow[-4]{} 13 \xrightarrow[-2]{} 11 \xrightarrow[-4]{} 7 \xrightarrow[-2]{} 5 \xrightarrow[-4]{} 1$				
∴ option A true	40. (A)	Here, $W = 4$ and $T = 7$				
a(b-c) = ab - ac		Now,				
is a distributive property		ΤΕΝ				
∴ option 'B' true		$\downarrow \downarrow \downarrow \downarrow$				
$\frac{-7}{4}$ lies between -2 and -1		7 + 22 + 13 = 42				
4 lies between -2 and -1		Then,				
∴ option 'C' false		S W E E T \downarrow \downarrow \downarrow \downarrow \downarrow				
$\frac{1}{4}$ a rational number but zero is a rational		$\begin{array}{c} \downarrow \downarrow \downarrow \downarrow \downarrow \\ 8 + 4 + 22 + 22 + 7 = 63 \end{array}$				
4 number		So, the code for SWEET is 63				
		Hence, option (A) is correct.				
$\left(\frac{1}{4}\right)$, 1	41. (C)					
$\therefore \frac{(4)}{0}$ is not defined		$82 \rightarrow 28 + 30 = 38$				
∴ option 'D' is false						
		$64 \rightarrow 46 + 10 = 56$				
	42. (A)					
	41. (B)	$3 \rightarrow \text{Electrician}$				
		$5 \rightarrow \text{Electrification}$				
		$1 \rightarrow \text{Electrolysis}$				
		$4 \rightarrow \text{Electroplating}$				
		$2 \rightarrow \text{Electrotyping}$				
website : www.unifiedcouncil.com						

CRITICAL THINKING

45. (C) On the basis of given information, we can draw the following table.

Students	Dramatic	Computer Science	Physics	History	Maths	
Α	×	~	~	~	~	
В	~	~	~	×	×	
С	×	×	~	~	~	
D	~	×	~	~	×	
E	V	V	X	V	X	

From the table it is clear that C is good in Physics. History and Mathematics, but not in Computer Science. Hence, option (C) is correct. 46. (A) (+

47. (B)

$$P \xrightarrow{1}_{2} Q \xrightarrow{1}_{3} R \xrightarrow{1}_{1} T \xrightarrow{1}_{2} S \xrightarrow{1}_{2} U$$

48. (D) A culture is the behavior pattern of a particular population, so customs are the essential element. A culture may or may not be civil or educated (choices A and B). A culture maybe an agriculture society (choice C), but this is not the essential element.

50. (D) Diagonally opposite rectangles have identical dot arrangements but with black/white reversal.

website : www.unifiedcouncil.com

The End

44. (D)